A decentralized multi-level leader-follower game for network design of a competitive supply chain

Authors

  • Ahmad Makui Department of Industrial Engineering, Iran University of Science and Technology, Terhan, Iran
  • kaveh fahimi Department of Industrial Engineering, Iran University of Science and Technology, Terhan, Iran
Abstract:

This paper develops a decentralized leader-follower game for network design of a competitive supply chain problem in which a new chain as the leader enters a market with one existing supply chain as a follower. Both chains produce an identical product, customer demand is inelastic and customer utility function is based on Huff gravity-based model. The leader wants to shape his network and set assignments where the follower will show reactions by changing her networks in a sequential manner. Multi-level mixed integer nonlinear programming model is used to model the problem. Each chain can enter the market in centralized, decentralized or cooperative modes. Enumeration method is applied to solve the problem by the help of Stackelberg equilibrium concept. Finally, some numerical examples are used to explore the algorithm and different mode structures affect the equilibrium solution.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Simultaneous Decentralized Competitive Supply Chain Network Design under Oligopoly Competition

This paper discusses a problem in which  decentralized supply chains enter the market simultaneously with no existing rival chains, shape the supply chains’ networks, and set wholesale and retail prices in a noncooperative manner. All the chains produce either identical or highly substitutable products. Customer demand is elastic and price-dependent. A three-step algorithm is proposed to solve ...

full text

A possibilistic bi-objective model for a competitive supply chain network design under variable coverage

In this paper, the strategic planning of a supply chain under a static chain-to-chain competition on the plane is addressed. It is assumed that each retailer has a coverage area called the radius of influence. The demand of each demand zone is divided equally between the retailers which can cover that market. However, the demand of distant customers who are not in the retailers’ radius of influ...

full text

A multi objective mixed integer programming model for design of a sustainable meat supply chain network

In the recent decades, rapid population growth has led to the significant increase in food demand. Food supply chain has always been one of the most important and challenging management issues. Product with short age, especially foodstuffs, is the most problematic challenges for supply chain management. These challenges are mainly due to the diversity in the number of these goods, the special n...

full text

A new multi-objective mathematical model for a Citrus supply chain network design: Metaheuristic algorithms

Nowadays, the citrus supply chain has been motivated by both industrial practitioners and researchers due to several real-world applications. This study considers a four-echelon citrus supply chain, consisting of gardeners, distribution centers, citrus storage, and fruit market. A Mixed Integer Non-Linear Programming (MINLP) model is formulated, which seeks to minimize the total cost and maximi...

full text

Optimizing decentralized production–distribution planning problem in a multi-period supply chain network under uncertainty

Decentralized supply chain management is found to be significantly relevant in today’s competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final produc...

full text

A ROBUST OPTIMIZATION MODEL FOR BLOOD SUPPLY CHAIN NETWORK DESIGN

The eternal need for humans' blood as a critical commodity makes the healthcare systems attempt to provide efficient blood supply chains (BSCs) by which the requirements are satisfied at the maximum level. To have an efficient supply of blood, an appropriate planning for blood supply chain is a challenge which requires more attention. In this paper, we address a mixed integer linear programming...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 4

pages  1- 27

publication date 2017-10-15

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023